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Abstract

I try to intuitively visualize some important concepts introduced in “Linear Algebra for Everyone”,”

which include Column-Row (C R), Gaussian Elimination (LU ), Gram-Schmidt Orthogonalization (QR),
Eigenvalues and Diagonalization (QAQ™), and Singular Value Decomposition (UXV™T). This paper
aims at promoting the understanding of vector/matrix calculations and algorithms from the perspective
of matrix factorization. All the artworks including the article itself are maintained under the GitHub
repository https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra/.

Foreword

I am happy to see Kenji Hiranabe’s pictures of matrix operations in linear algebra ! The pictures are an
excellent way to show the algebra. We can think of matrix multiplications by row - column dot products,
but that is not all — it is “linear combinations” and “rank 1 matrices” that complete the algebra and the art.
I am very grateful to see the books in Japanese translation and the ideas in Kenji’s pictures.

— Gilbert Strang
Professor of Mathematics at MIT
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1 Viewing a Matrix — 4 Ways
A matrix (m x n) can be viewed as 1 matrix, mn numbers, n columns and m rows.
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Figure 1: Viewing a Matrix in 4 Ways
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A= a2 axp| =|a1 a2| = |—-a3—
as  asz | \ —aj—

Here, the column vectors are in bold as @;. Row vectors include * as in aj. Transposed vectors and
matrices are indicated by T as in a and AT.
2 Vector times Vector — 2 Ways

Hereafter I point to specific sections of “Linear Algebra for Everyone” and present graphics which illustrate
the concepts with short names in gray circles.

e Sec. 1.1 (p.2) Linear combination and dot products
e Sec. 1.3 (p.25) Matrix of Rank One

e Sec. 1.4 (p.29) Row way and column way

vl [_]{} = mm = @ Dot product (number) v2 {}[-] ={-} = {: :} Rank 1 Matrix

Dot product (a - b) is expressed as ab in ab” is a matrix (abT = A). If neither a, b are 0,
matrix language and yields a number. the result A is a rank 1 matrix.
X1 1 X1 1 x oy
[1 2 3]|*x2|=|2][*2| =2, +2x, + 3x5 2[[x y]=|2x 2y
X3 3 X3 3 3x 3y

Figure 2: Vector times Vector - (v1), (v2)

(v1) is an elementary operation of two vectors, but (v2) multiplies the column to the row and produces
a rank 1 matrix. Knowing this outer product (v2) is the key to the following sections.



3 Matrix times Vector — 2 Ways

A matrix times a vector creates a vector of three dot products (Mvl) as well as a linear combination (Mv2)
of the column vectors of A.

e Sec. 1.1 (p.3) Linear combinations

e Sec. 1.3 (p.21) Matrices and Column Spaces

“EE W

The row vectors of A are multiplied by a vector x The product Ax is a linear combination of the
and become the three dot-product elements of Ax. column vectors of A.

1 2 X (x1+2x;) 12 X1 1 2
sz[g 4] [xz]: (3x; + 4x;) Ax=|3 4 [x2]=x1 3| +x, |4
5 6 (5x; + 6x3) 5 6 5 6

Figure 3: Matrix times Vector - (Mvl), (Mv2)

At first, you learn (Mvl). But when you get used to viewing it as (Mv2), you can understand Az as
a linear combination of the columns of A. Those products fill the column space of A denoted as C(A).
The solution space of Az = 0 is the nullspace of A denoted as N(A4). To understand the nullspace, let the
right-hand side of (Mv1) be 0 and see all the dot products are zero.

Also, (vM1) and (vM2) show the same pattern for a row vector times a matrix.

[—]{ } = [ 4]

A row vector y is multiplied by
he two column vectors of 4
= [(3+3y; +5 2y, +4y, +6 ¢
(01 +372 vs) (2n V2 Ya)] and become the two dot-product
elements of yA.

yA=[y1 Y2 Y3] [

U1 W =
AN BN

w2 [®e .]ﬂ = oM + ofmu— + o[H
—

12 The product yA is a linear
YA=[1 Y2 ¥3]|3 4|=y1[1 2]+y,[3 4]+ y3[5 6] combination of the row
5 6

vectors of 4.

Figure 4: Vector times Matrix - (vM1), (vM2)

The products fill the row space of A denoted as C(AT). The solution space of yA = 0 is the left-nullspace
of A, denoted as N(AT).

The four subspaces consist of N(A) + C(A™") (which are perpendicular to each other) in R™ and N(A™T)
+ C(A) in R™ (which are perpendicular to each other).

e Sec. 3.5 (p.124) Dimensions of the Four Subspaces
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Figure 5: The Four Subspaces

See A = CR (Sec 6.1) for the rank r.

4 Matrix times Matrix — 4 Ways

“Matrix times Vector” naturally extends to “Matrix times Matrix”.

e Sec. 1.4 (p.35) Four Ways to Multiply AB = C

e Also see the back cover of the book
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Every element becomes a dot product of row vector Ax and Ay are linear combinations of columns of A4.

and column vector.
1 2
X1 Y
[3 4] [ ] =|Gutax)  Gritays)
5 6 (5x,+6x,) (5y1+6y,)

* =m * UEET

12
Gat2n) - 01+27,) [3 4] [ =4 y1=lax 4y
P Y2

] . Multiplication AB is broken down to a sum of rank 1 matrices.
by b b; . .
The produced rows are linear combinations of rows. L 6] [b; b; az] [b;] = a1 b1 + azb;
1 X 2 P P 2by1 2bz;
[3 ] [ ] _ az x = |agx = 3 (b1 bzl + (4| [b21 b2zl =|3b11 3biz|+ [4b21  4by
: o 5 6 Sbyy Sbipl l6by 6byy

Figure 6: Matrix times Matrix - (MM1), (MM2), (MM3), (MM4)

5 Practical Patterns

Here, I show some practical patterns which allow you to capture the upcoming factorizations in a more
intuitive way.

°|= = + + using
P1 123 ® 123 1 1 2 3 M2M Mv2
)
Operations from the right act on the = + +
columns of the matrix. This 2 1 2 3
expression can be viewed as the three
linear combinations on the right in - - T
one formula. 1= o +.'-+
3 1 2 3
= 1 (] = oI o[ o[- ,
P2 —— 2 using
MM
© oo Fummm 3 (] = o m— o —+ c— 2

Operations from the left act on the
rows of the matrix. This expression [
can be viewed as the three linear

combinations on the right in one

formula.

30| = of NI | of M2+ o MENSEN

Figure 7: Pattern 1, 2 - (P1), (P1)

Pattern 1 is a combination of (MM2) and (Mv2). Pattern 2 is an extension of (MM3). Note that Pattern
1 is a column operation (multiplying a matrix from right), whereas Pattern 2 is a row operation (multiplying
a matrix from left).
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Applying a diagonal matrix from the right Applying a diagonal matrix from the left
scales each column. scales each row.

dy
AD =[a; a; a;,][ d, ]=[d1a1 d,a; dsaz] DB =

d, b3 d, b}
d, ] ;| = |d,b;
dsl|p3]  |dsb;

ds
Figure 8: Pattern 1/, 2’ - (P1), (P2/)

(P1’) multiplies the diagonal numbers to the columns of the matrix, whereas (P2’) multiplies the diagonal
numbers to the row of the matrix. Both are variants of (P1) and (P2).

- g

This pattern reveals another combination of columns.
You will encounter this in differential /recurrence equations.

dy €1
XDc=[x1 Xz X3] [ d, } [‘32] = c1d; X1 + CdXp+ c3d3xg
dsllCs

Figure 9: Pattern 3 - (P3)

This pattern emerges when you solve differential equations and recurrence equations:

e Sec. 6 (p.201) Eigenvalues and Eigenvectors

e Sec. 6.4 (p.243) Systems of Differential Equations

e Au(t), u(0) = wug

Upi1 = Aup,  uo = U
In both cases, the solutions are expressed with eigenvalues (A1, A2, A3), eigenvectors X = [ml T2 .’133}

of A, and the coefficients ¢ = [cl Co 03]T which are the coordinates of the initial condition w(0) = ug in
terms of the eigenvectors X.

Uy = C1T1 + C2x2 + C3T3

C1
c= |eo| = X g
C3

and the general solution of the two equations are:

A

w(t) = eMug = XeMX g = XeMe = creMtey + coe™tey + czetag

U, = AMug = XA"X tug = XA"c=c1A\Tx1 + coA\5 e + c3A5 a3

See Figure 9: Pattern 3 (P3) above again to get X Dc.
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A matrix is decomposed into a sum of rank 1 matrices,
as in singular value/eigenvalue decomposition.

T
0-1 vl

Usvt =[ur uy us]| o, ||vI|=0uwv] +ou,vi+osusvl
031 |pT
3

Figure 10: Pattern 4 - (P4)

This pattern (P4) works in both eigenvalue decomposition and singular value decomposition. Both de-
compositions are expressed as a product of three matrices with a diagonal matrix in the middle, and also a
sum of rank 1 matrices with the eigenvalue/singular value coefficients.

More details are discussed in the next section.



6 The Five Factorizations of a Matrix
e Preface p.vii, The Plan for the Book.
A=CR,A=LUA=QR,A=QAQ"T, A=UXVT are illustrated one by one.
.
1

Independent columns in C'
Row echelon form in R
Leads to column rank = row rank

|
-II

LU decomposition from
A=LU L Gaussian elimination
(Lower triangular)(Upper triangular)

° QR decomposition as
A= QR L _ - Gram-Schmidt orthogonalization
Orthogonal @ and triangular R

[
o
T ° Eigenvalue decomposition
S = QAQ L L - of a symmetric matrix S

Eigenvectors in @, eigenvalues in A

T Singular value decomposition
A=UXV L L of all matrices A

Singular values in X

Table 1: The Five Factorization

61 A=CR
e Sec.1.4 Matrix Multiplication and A = CR (p.29)
The row rank and the column rank of a general rectangular matrix A are equal. This factorization is the

most intuitive way to understand this theorem. C' consists of independent columns of A, and R is the row
reduced echelon form of A. A = CR reduces to r independent columns in C' times r independent rows in R.

A=CR
1 2 3] (1 211 01
2 3 5| |2 3[/|0 1 1
Procedure: Look at the columns of A from left to right. Keep independent ones, discard dependent ones
which can be created by the former columns. The column 1 and the column 2 survive, and the column 3

is discarded because it is expressed as a sum of the former two columns. To rebuild A by the independent
columns 1 and 2, you find a row echelon form R appearing on the right.



A C R

[ ]:[“M :}=[1+z 1+ .1+.2} using

Figure 11: Column Rank in CR

Now the column rank is two because there are only two independent columns in C' and all the columns
of A are linear combinations of the two columns of C.

) ]

Figure 12: Row Rank in CR

And the row rank is also two because there are only two independent rows in R and all the rows of A are
linear combinations of the two rows of R.

6.2 A=LU

Solving Ax = b via Gaussian elimination can be represented as an LU factorization. Usually, you apply
elementary row operation matrices (E) to A to make upper triangular U.

EA=U
A=E"'U
let L=E"', A=LU
Now solve Az = b in 2 steps: (1) forward Le = b and (2) back Uz = c.
e Sec.2.3 (p.57) Matrix Computations and A = LU

Here, we directly calculate L and U from A.

| 000 | | 00 0
A=|h| [Fui=]+ |0 | =|h| [Fui-]+ || [Fui-]+ |0 0 0| =LU
| U | | 0 0 A
A L U
— + + = |

L
I . ]

Figure 13: Recursive Rank 1 Matrix Peeling from A

To find L and U, peel off the rank 1 matrix made of the first row and the first column of A. This leaves
As. Do this recursively and decompose A into the sum of rank 1 matrices.

L U
| + + using

=F'ereC

Figure 14: LU rebuilds A



To rebuild A from L times U, use column-row multiplication.

6.3 A=QR

A = QR changes the columns of A into perpendicular columns of @, keeping C(A) = C(Q).
e Sec.4.4 Orthogonal matrices and Gram-Schmidt (p.165)

In Gram-Schmidt, the normalized a; is g;. Then as is adjusted to be perpendicular to g; to create g-.
This procedure gives:

q1 = ai/||a||
@ =ax— (gl ax)qi, a2 = a2/||q||
q; = a3 — (a1 a3)q1 — (g3 a3)q2, g3 = q3/||qs]|

In the reverse direction, let r;; = ql a; and you will get:

a; = 111491
az = 1r12q1 + 1224Q2

as = ri13q1 + 2392 + 13393

The original A becomes QR: orthogonal ) times upper triangular R.

| | | 11 Ti2 T3

A=|q1 q2 g3 ro2 To3| = QR
| | | 733
QR =QTQ=1
A Q R 1 a2 43 using
= ® 0o 0 — +. o +. +. P1
123/ ¢ 1 172 1 23
°

Figure 15: A= QR

Each column vector of A can be rebuilt from @ and R.
See Pattern 1 (P1) again for the graphic interpretation.

6.4 S=QAQT

All symmetric matrices S must have real eigenvalues and orthogonal eigenvectors. The eigenvalues are the
diagonal elements of A and the eigenvectors are in Q.

e Sec.6.3 (p.227) Symmetric Positive Definite Matrices

10
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S=QAQ" = |a1 q g3 A2 —q; —
. As| |—a3 —

\ | |
=M\ (1‘1 [—af =] + A2 q|2 [—aq3 =] + s q|3 [—a3 ]
— AP+ APy + AP

Pi=qiql, P.=qxqs, P3=q3q;

S Q A QT /‘llqlq']I: /12q2qg AB‘I3Q§ using
— ° 1 — o1 + o2 + o3 P4
123 ° 2 1 2 3
° 3

Figure 16: S = QAQT

A symmetric matrix S is diagonalized into A by an orthogonal matrix @ and its transpose. And it is
broken down into a combination of rank 1 projection matrices P = qq*. This is the spectral theorem.
Note that Pattern 4 (P4) is working for the decomposition.

S=8"= MNP+ AP+ A3Ps
QR =P +P,+P;s=1
PP, =PFP,Ps=P;P, =0
Pl=P =P', Pi=P,=P), Pj=P3=P]
6.5 A=UXVT
e Sec.7.1 (p.259) Singular Values and Singular Vectors

Every matrix (including rectangular one) has a singular value decomposition (SVD). A = USVT has the
singular vectors of A in U and V. The following figure illustrates the 'reduced’” SVD.

A U P 0, Uy vy 0, UpVy using

R E

Figure 17: A=UXVT

You can find V as an orthonormal basis of R” (eigenvectors of ATA) and U as an orthonormal basis of

R™ (eigenvectors of AAT). Together they diagonalize A into X. This can be also expressed as a combination
of rank 1 matrices.

I ] {or T | |
A=USV" = |u; wuy us o2 [ vlr ]01 uy| [—vf =] + o2 |uz| [—v3—]
| |

T T
=01U1V; + 02U2Vy

11



Note that:

vut =1,
vvt =1,

See Pattern 4 (P4) for the graphic notation.

Conclusion and Acknowledgements

I have presented a systematic visualization of matrix/vector multiplication and its applications to the Five
Matrix Factorizations. I hope you enjoy them and find them useful in understanding Linear Algebra.

Ashley Fernandes helped me with typesetting, which makes this paper much more appealing and profes-
sional.

To conclude this paper, I'd like to thank Prof. Gilbert Strang for publishing “Linear Algebra for Ev-
eryone”. It presents a new pathway to these beautiful landscapes in Linear Algebra. Everyone can reach a
fundamental understanding of its underlying ideas in a practical manner that introduces us to contemporary
and also traditional data science and machine learning.
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Figure 19: Matrix World

5. Gilbert Strang, artwork by Kenji Hiranabe, The Four Subspaces and the solutions to Ax = b

A€ Rmxn

R — s R™

R™ = N(4) + €(4") R™ = C(4) + N(4T)
N(4) L c(4T) C(A) L N(4AT)

Figure 20: The Four Subspaces and the solutions to Az = b
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